BIOCHAR-MEDIATED CHANGES IN SOIL MICROBIAL COMMUNITIES AND THEIR IMPACT ON NUTRIENT CYCLING AND PLANT GROWTH
Keywords:
MEDIATED CHANGES, SOIL MICROBIALAbstract
Soil is a complex and dynamic ecosystem that plays a crucial role in sustaining plant growth and maintaining environmental quality [1]. The health and productivity of soils largely depend on the diversity and activity of microbial communities residing within them [2]. These microorganisms are involved in various biogeochemical processes, including decomposition of organic matter, nutrient cycling, and formation of soil aggregates [3]. In recent years, there has been growing interest in the use of biochar as a soil amendment to enhance soil fertility, sequester carbon, and promote sustainable agriculture [4]. Biochar is a carbon-rich product obtained from the pyrolysis of biomass under limitedoxygen conditions [5]. When applied to soil, biochar can interact with native microbial communities, leading to changes in their composition, diversity, and functional activities [6][7].
The scope of this review encompasses studies conducted on a wide range of soil types, biochar feedstocks, andpyrolysis conditions [8]. Focus on the effects of biochar on soil bacterial, archaeal, and fungal communities, as well as specific functional groups involved in nutrient cycling processes [9]. The implications of biochar-mediated changes in soil microbiota for plant growth and nutrition are also discussed [10]. This review is intended to provide valuable insights for researchers, practitioners, and policymakers interested in harnessing the potential of biochar for sustainable soil management and crop production.
References
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337(1), 1-18.
Bruun, E. W., Ambus, P., Egsgaard, H., & Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, 73-79.
Cayuela, M. L., Van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A. (2014). Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 191, 5-16.
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629-634.
Chen, J., Liu, X., Zheng, J., Zhang, B., Lu, H., Chi, Z., ... & Wang, J. (2013). Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology, 71, 33-44.
Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6), 1598-1610.
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393-404.
Clough, T. J., & Condron, L. M. (2010). Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39(4), 1218-1223.
Clough, T., Condron, L., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275-293.
Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., ... & Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3(2), 256-274.
Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification- A critical review. Science of the Total Environment,581, 601-611.
Dempster, D. N., Gleeson, D. B., Solaiman, Z. I., Jones, D. L., & Murphy, D. V. (2012). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354(1), 311-324.
Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., & Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution, 213(1), 47-55.
Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152-162.
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., ... & Ok, Y. S. (2019). Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536-554.
Fang, Y., Singh, B., Singh, B. P., & Krull, E. (2014). Biochar carbon stability in four contrasting soils. European Journal of Soil Science, 65(1), 60-71.
Farrell, M., Kuhn, T. K., Macdonald, L. M., Maddern, T. M., Murphy, D. V., Hall, P. A., ... & Baldock, J. A. (2013). Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465, 288-297.
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35(4), 219-230.
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental benefits of biochar. Journal of Environmental Quality, 41(4), 967-972.
Kammann, C. I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., ... & Stephen, J. (2015). Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports, 5(1), 1-13.
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agriculture, ecosystems & environment, 140(1-2), 309-313.
Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, technology
and implementation. Routledge. Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 403-427.
Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., ... & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18(2), 546-563.
Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., ... & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18(2), 546-563.
Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O'Neill, B., Trujillo, L., ... & Luizão, F. J. (2010). Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2), 206-213.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., ... & Paz-Ferreiro, J. (2013). Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 373(1), 583-594.
Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., ... & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on loamy sand. Annals of Environmental Science, 3, 195-206
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., ... & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22.
PrendergastMiller, M. T., Duvall, M., & Sohi, S. P. (2011). Localisation of nitrate in the rhizosphere of biocharamended soils. Soil Biology and Biochemistry, 43(11), 2243-2246.
Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, T., & Meek, D. (2011). Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Science Society of America Journal, 75(3), 871-879.
Rondon, M. A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and fertility of soils, 43(6), 699-708.
Saarnio, S., Heimonen, K., & Kettunen, R. (2013). Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biology and Biochemistry, 58, 99-106.
Saifullah, Dahlawi, S., Naeem, A., Rengel, Z., & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 625, 320-335.
Singh, B. P., Cowie, A. L., & Smernik, R. J. (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental science & technology, 46(21), 11770-11778.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82.
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., ... & Nichols, K. A. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41(4), 973-989.
Spokas, K. A., Novak, J. M., & Venterea, R. T. (2012). Biochar's role as an alternative Nfertilizer: ammonia capture. Plant and soil, 350(1), 35-42. Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310.
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and soil, 291(1), 275-290.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., ... & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
Wang, D., Fonte, S. J., Parikh, S. J., Six, J., & Scow, K. M. (2017). Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303, 110-117.
Wang, J., Pan, X., Liu, Y., Zhang, X., & Xiong, Z. (2012). Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant and soil, 360(1), 287-298.
Weng, Z., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., ... & Cowie, A. (2017). Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 7(5), 371-376.
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature communications, 1(1), 1-9.
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environmental science & technology, 52(9), 5027-5047.
Xu, G., Wei, L. L., Sun, J. N., Shao, H. B., & Chang, S. X. (2013). What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism. Ecological Engineering, 52, 119-124.
Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 568, 910-915.
Xu, R. K., Zhao, A. Z., Yuan, J. H., & Jiang, J. (2012). pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. Journal of Soils and Sediments, 12(4), 494-502.
Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., & Cao, X. (2017). Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, 887-899.
Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions
from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science & Plant Nutrition, 53(2), 181-188.
Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467-1471.
Ye, J., Joseph, S. D., Ji, M., Nielsen, S., Mitchell, D. R., Donne, S., ... & Munroe, P. (2017). Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. The ISME Journal, 11(5), 1087-1101.
Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., ... & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232, 8-21.
Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497.
Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and soil, 351(1), 263-275.
Zhang, D., Yan, M., Niu, Y., Liu, X., van Zwieten, L., Chen, D., ... & Zheng, J. (2016). Is current biochar research addressing global soil constraints for sustainable agriculture. Agriculture Ecosystems & Environment, 226, 25-32.
Zhang, H., Chen, C., Gray, E. M., Boyd, S. E., Yang, H., & Zhang, D. (2016). Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma, 276, 1-6.